ÿØÿà JFIF ÿþ
ÿÛ C
ÿÛ C ÿÀ ÿÄ ÿÄ " #QrÿÄ ÿÄ & 1! A"2qQaáÿÚ ? Øy,æ/3JæÝ¹Èß²Ø5êXw²±ÉyR¾I0ó2PI¾IÌÚiMö¯þrìN&"KgX:íµnTJnLK
@!-ýùúmë;ºgµ&ó±hw¯Õ@Ü9ñ-ë.²1<yà¹ïQÐUÛ?.¦èûbß±©Ö«Âw*V) `$bØÔëXÖ-ËTÜíGÚ3ð«g §¯JxU/ÂÅv_s(Hÿ @TñJÑãõçn!ÈgfbÓc:él[ðQe9ÀPLbÃãCµm[5¿ç'ªjglåÛí_§Úõl-;"PkÞÞÁQâ¼_Ñ^¢S x?"¸¦ùYé¨ÒOÈ q`~~ÚtËU¹CÚêV I1Áß_ÿÙ
-----------------
| **`Travis CI Status`** |
|-------------------|
[](https://travis-ci.org/numpy/numpy)|
NumPy is the fundamental package needed for scientific computing with Python.
This package contains:
* a powerful N-dimensional array object
* sophisticated (broadcasting) functions
* tools for integrating C/C++ and Fortran code
* useful linear algebra, Fourier transform, and random number capabilities.
It derives from the old Numeric code base and can be used as a replacement for Numeric. It also adds the features introduced by numarray and can be used to replace numarray.
More information can be found at the website:
* http://www.numpy.org
After installation, tests can be run (if ``nose`` is installed) with:
python -c 'import numpy; numpy.test()'
The most current development version is always available from our
git repository:
* http://github.com/numpy/numpy