ÿØÿàJFIFÿþ ÿÛC       ÿÛC ÿÀÿÄÿÄ"#QrÿÄÿÄ&1!A"2qQaáÿÚ ?Øy,æ/3JæÝ¹È߲؋5êXw²±ÉyˆR”¾I0ó2—PI¾IÌÚiMö¯–þrìN&"KgX:Šíµ•nTJnLK„…@!‰-ý ùúmë;ºgµŒ&ó±hw’¯Õ@”Ü— 9ñ-ë.²1<yà‚¹ïQÐU„ہ?.’¦èûbß±©Ö«Âw*VŒ) `$‰bØÔŸ’ëXÖ-ËTÜíGÚ3ð«g Ÿ§¯—Jx„–’U/ÂÅv_s(Hÿ@TñJÑãõçn­‚!ÈgfbÓc­:él[ðQe 9ÀPLbÃãCµm[5¿ç'ªjglå‡Ûí_§Úõl-;"PkÞÞÁQâ¼_Ñ^¢SŸx?"¸¦ùY騐ÒOÈ q’`~~ÚtËU¹CڒêV  I1Áß_ÿÙ

----------------- | **`Travis CI Status`** | |-------------------| [![Travis](https://api.travis-ci.org/numpy/numpy.svg?branch=master)](https://travis-ci.org/numpy/numpy)| NumPy is the fundamental package needed for scientific computing with Python. This package contains: * a powerful N-dimensional array object * sophisticated (broadcasting) functions * tools for integrating C/C++ and Fortran code * useful linear algebra, Fourier transform, and random number capabilities. It derives from the old Numeric code base and can be used as a replacement for Numeric. It also adds the features introduced by numarray and can be used to replace numarray. More information can be found at the website: * http://www.numpy.org After installation, tests can be run (if ``nose`` is installed) with: python -c 'import numpy; numpy.test()' The most current development version is always available from our git repository: * http://github.com/numpy/numpy